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Space-Time as a Micromorphic Continuum 
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We review generally-covariant Lagrangians for the field of  linear coframes in 
an n-dimensional  manifold. Discussed are Lagrangians invariant under  the 
internal group GL(n, ~) and under  its pseudo-Eucl idean subgroups.  It is shown 
that  group spaces of  semisimple Lie groups and certain of  their modifications 
are natural vacuumlike solutions for all GL(n, E)-invariant models. In some 
sense the signature of  space-time may be interpreted as a consequence of 
differential equations;  the velocity of  light is an integration constant. 

Let M be an n-dimensional mani fo ld- -usual  space-time or a higher- 
dimensional Kaluza-like universe. We shall consider a hypothetical physical 
system with degrees of  f reedom represented by the field of  linear coframes 
e =  ( . . . ,  e K , . . . ) r ,  K = 1 , . . . ,  n. Interpreting e as an Rn-valued Pfaff form, 
we shall denote the system of  exterior differentials de K by de. The dual 
contravariant  frame will be denoted by ~=  ( . . . ,  e ~ , . . . ) .  In terms of local 
coordinates x i, i = 1 , . . . ,  n, the frames e, ~ are analytically represented by 
matrices [e/K], i i O/OX i. [eK], respectively; thus, locally, e K = e~ dx ~, eK = eK 
In elasticity such frame-based objects are known as micromorphic continua. 
By analogy to gauge theories, the anholonomic index K will be interpreted 
as an internal or isotopic index labeling basic fields within the n-dimensional 
multiplet. 

The full linear group GL(n,  R) is a natural group of kinematic sym- 
metries. It acts on fields e according to 

L ~ G L ( n , R ) :  L e = L (  e K, )T :=(  K M . . ) r  . . . ,  . . . . . .  , L M e  , .  

I shall consider only first-order variational models with Lagrangians built 
algebraically of  e and de, L(e, de), L being a Weyl density of  weight one. 
There is a priori a wide freedom of such Lagrangians; to make a reasonable 

t lnstitute of  Fundamental  Technological Research, Polish Academy of Sciences, Warsaw, 
Poland. 

1177 

0020-7748/90/1100-1177S06.00/0 �9 1990 Plenum Publishing Corporation 



1178 Slawianowski 

restriction, one must impose on them certain invariance conditions. First, 
of  all, I consider only generally covariant models, L[~p*e] = ~p*L[e] modulo 
a total divergence; ~p e Diff M is an arbitrary diffeomorphism. Besides, it is 
natural to assume certain internal symmetry, L[ Ue] = L[e] modulo a total 
divergence; U c  G, G being an as yet unspecified subgroup of GL(n, R). 

If  one is not charged with any habits from general relativity and 
alternative theories of gravitation, then it seems that the best candidate for 
internal symmetry group is just GL(n, •) i tself--the natural group of kine- 
matic symmetries. Thus, one should start with GL(n, R)-invariant models, 
and then investigate the hierarchy of  models invariant under natural sub- 
groups of  GL(n, R). It is natural to expect that the GL(n, R)-invariant 
models are good candidates for fundamental theories, whereas the restric- 
tion to subgroups G c  GL(n, R) should appear not on the level of funda- 
mental equations, but rather on the level of  solutions, when one investigates 
small vibrations about some fixed solutions, vacuums. This mechanism 
would be similar to the spontaneous symmetry breaking. I review 
Lagrangians invariant under GL(n ,~ ) ,  SL(n ,~ ) ,  and under pseudo- 
Euclidean groups O( k, n -  k ). 

1. LAGRANGIANS INVARIANT U N D E R  GL(n, R) 

Let us introduce GL(n, •)-invariant differential concomitants of the 
coframe e. The basic quantity is the F[e]-teleparallelism connection induced 
by e and uniquely defined by the demand Ve ~r = 0, K = 1 , . . . ,  n. Analyti- 
cally, 

F ~ k  ---- i M M i eMej ,  k - ~ - e j  eM, k 

It is by definition curvature-free. Its torsion S~k = Fi;k 3 may be written as 
S = - e K  @de K and is equivalent to the nonholonomy object of e, as seen 
from the formulas 

[eK, eL] = ~ / K L e M ,  de  K 1 K M : 2'YLM e A e L 

s l K ~TLMeK | eL| eM 

From S we can construct the following three-parameter family of twice 
covariant tensors: 

T~j = A y  u + B%Tj + CF~j 

= 4ASTbSba + 4BSToSbb + 4CSabSqb a 

A, B, C are real constants. This is the most general GL(n, ~)-invariant 
tensor quadratic in derivatives of e. The symmetric part 

gij = A7~; + B~'iTj 
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is the most natural candidate for the spatiotemporal metric tensor. Its second 
term is degenerate; thus, the main metriclike term is given by the Killing 
tensor Yu. If  M is a Lie group and the e K are basic right-invariant differential 
forms, then K YLM are structure constants, and the nonholonomic compon- 

K L ents of the Killing tensor 70, "}lAB : ]/AL]/BK coincide with the well-known 
Kill ing-Caftan metric coefficients of the corresponding Lie algebra. 

There are also GL(n, l~)-invariant scalars built of  e, de, e.g., 

bj ckc2a Ci abr , - , ~  Tr[y~"F~b] p, etc. 
7 ~ i 7  7 ~1 7 6  'Y ~'~akA"~brn, 

They are zero-degree homogeneous functions of derivatives. 
GL(n, N)-invariant Lagrangians may be alternatively written in any of 

the following general forms, (Stawianowski, 1985): 

L( S) = a( S)[ ~,l 1/2 = b(S)[ T] '/2 (1) 

where scalar functions a, b depend on S through the aforementioned scalars; 
[Yl and I TI denote the determinants of matrices of y, T, respectively. Such 
Lagrangians are homogeneous of degree n in S. The simplest models are 
those with a = const or b = const, i.e., I~,11/= or ITI ~/2. The GL(n, N)-invariant 
models are strongly nonlinear; Lagrangians are never quadratic in deriva- 
tives and field equations are not quasilinear. The square-root structure 
resembles the Born-Infeld electrodynamics and leads one to expect a finite 
behavior of  spherical solutions at r = 0. The lack of gradient invariance 
makes such models similar to Mie's electrodynamics: 

2. LAGRANGIANS INVARIANT UNDER SL(n, R ) c  GL(n, R) 

They may be written in any of  the following equivalent forms: 

L = a(S, lel)l ~,l ]/2-- b(S, [el)l T[ 1/2= c(S, [el)lel (2) 

where lel = det[e/K], and a, b, c are functions of  e and basic invariants of 
S. I do not consider such models in this paper. 

3. LAGRANGIANS INVARIANT UNDER O ( k ,  n -  k) ~ GL(n, R) 

To describe them we introduce another concomitant of e, namely the 
so-called Dirac-Einstein metric h[e]: 

h [ e ] : :  "qKLe K ( ~ e  i.e., h~/ = ,rlKLe iK ejL 

where 

E KL =dia+ 1) 
k n~k 
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In tetrad-based Lorentz-invariant theories of gravitation h[e] plays the role 
of  the spatiotemporal metric tensor. Its signature is introduced by hand 
through r/. The h[e] is constant under the e-parallelism, Vh[e] =0 ,  and 
orthonormal in the ~-sense. Note that the Killing tensor in general is not 
V-parallel. O(k, n - k) is the largest subgroup of  GL(n, R) preserving h[e], 

h [ U e ] = h [ e ]  iff U e O ( k , n - k )  (3) 

O(k, n -  k)-invariant Lagrangians may be written as follows: 

L ( S , h ) = a ( S , h ) l y l l / 2 = b ( S , h ) [ T l ~ / 2 = c ( S , h ) l h l ~ / e = c ( S , h ) l e [  (4) 

a, b, c are built of  basic invariants of S. The most convenient form is that 
based on the shape factor c. There are models quadratic in derivatives; they 
are linear combinations of  three invariants, 

L = ClL 1 q- c2L2q'- c3L3 = (c~Jl + c2J2+ C3Ja)[el (5) 
�9 - -  1,, l a b j l , , c k ~  a C i 

J 1  " - -  I r a i l l  I~ ~ J b c O j k  

. 1 4 a b ~ r n  ~ n  . - -  1 n a b  
J2 "-- , ,  JJ a n ~ J b m  - -  ~ l ' l  "~ab  

1 4 a b ~ k  ~ m  __  l ~ a b  
"]3 : :  " ~.3 a k ~ . ~ b m  - -  ~ l ' l  " ya ' ) / b  

Such Lagrangians, with k =  1 and n =4,  are used in metric-teleparallel 
theories of  gravitation (Hehl et al., 1980; Kopczyfiski, 1982). Einstein's 
theory corresponds to the special case c~:c2: Ca = 1:2: ( -4 ) ;  it is locally 
Lorentz-invariant, i.e., U in (3) may depend on x i. There is a wide family 
of  models (5) as compatible with experiment as Einstein's theory, but more 
convincing from the point of  view of gauge philosophy. Nonquadratic 
models (4) were suggested as a way out of  singularities of Einstein's theory 
(M611er, 1978). 

4. GROUP SPACES AS FUNDAMENTAL SOLUTIONS 

I now discuss the general form of field equations for O(k, n - k) and 
GL(n, ~) models. I use tensor densities 

OL OL 
H~ : -H~ := OS~' O~j : oJi .- ohij 

The field equations may be written as 

K j : :  VkHJk m j k  k j  + 2 S m k H i  - 2hikQ = 0 (6) 

and in the case of GL(n, R)-invariant models simply as 

K~ = V kH~ k + 2S~k n~ k = 0 (7) 

V denotes the covariant differentiation in the sense of F[e]. It will be 
convenient to use the form 

G~kbcr7 ca  .~ 2Sr~knJk = 2h,kQkJ ( 8 )  a V k J J b c  
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where, using obvious abbreviations, G := OH/OS = 02L/OS aS. The generally 
covariant equations (6) are overdetermined and involve n redundant vari- 
ables to be fixed by coordinate conditions. Their strong nonlinearity prevents 
us from performing a Dirac analysis and deciding how strong are the 
integrability conditions. All that is evident is that the equations K ~ =0  
belong to secondary constraints; the zero label refers to the "t ime" variable. 
A priori it is not clear whether equations (6), (7) are consistent. Nevertheless, 
one can constructively show they are, because there exist geometrically 
distinguished vacuumlike solutions. O(k, n -  k)-invariant models provide 
a hint for guessing them. Namely, it is clear that for quadratic Lagrangians 
(5) every holonomic coframe is a solution. The corresponding metric h[e] 
is flat, de  = 0 and S = 0. Such solutions are classical vacuums in the sense 
they are homogeneou s situations as nonexcited physically as possible, just 
as ff = 0 is the classical vacuum of the Kle in-Gordon field. I fe  is holonomic, 
the contravariant vectors eK, K = 1 , . . . ,  n, generate the local Abelian group 
of  transformations acting transitively and freely in open domains of M. 
Thus, (M, e) is, at least locally, an Abelian group space. Do such Abelian 
vacuums exist for nonquadratic models L(S, h)? It is easy to formulate the 
following sufficient condition. 

For a general O(k, n -  k)-invariant model L(S, h), Abelian vacuums, 
i.e., solutions given by holonomic coframes, exist if: 

(i) Q(0, h) = OL/Oh(O, h) = 0, i.e., Q vanishes with S 
(ii) H(0,  h)=OL/OS(O, h), G(O, h)=O2L/OSOS(O, h) are finite and 

one-valued 

This follows from equation (8). For GL(n, R) models the condition (i) is 
trivially satisfied, but (ii) fails. Indeed, for S = 0, Lagrangians (1) have a 
differential singularity ~/-6, and both H and G are singular. Thus, the 
left-hand side of  (8) is not well-defined. One could try to argue that it 
vanishes for S = 0 if n > 2, because it consists of two terms which are 
homogeneous of degree n - 2 and n - 1 in S. This would be mathematically 
artificial, though. Besides, y vanishes then and the formalism has no metrical 
interpretation. 

There exist, however, semisimple vacuums. Every semisimple Lie form, 
i.e., a coframe for which contravariant vectors eK span a semisimple Lie 
algebra, is a solution of  (7) in principle for any model L(S). Nonholonomy 
coefficients Y~M are then structure constants, S is parallel, V S = 0 ,  and 
traceless, because structure constants of semisimple Lie algebras are trace- 
less. Thus, if a in (1) is smooth at S = 0 ,  then H(0)  and G(0) are finite and 
equation (8) is evidently satisfied. The vector fields eK generate a semisimple 
Lie group whose action on M is transitive and free. Thus, canonical forms 
on semisimple Lie groups are universal solutions for all GL(n, R)-invariant 
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models. For such solutions the Killing metric y[e] is parallel, Vy[e] = 0. It 
has a 2n-dimensional isotropy group generated by the er and by fields e~ 
conjugate to the er with respect to a fixed point of M identified with the 
group identity (if the eK are right invariant, then the eK are left invariant). 
Small excitations of such solutions feel the effective background of an 
absolute-like geometry created by the vacuum solutions. This background 
is a pseudo-Riemann-Cartan space. 

Similar ideas of Lie group spaces as vacuums of field-theoretic models 
based on differential forms were formulated in Toller (1980), D 'Adda et al. 
(1985) and Halpern (1984). Unfortunately, there are no semisimple four- 
dimensional Lie algebras; thus, either we have to give up the nice idea of 
group-space vacuums or save them in higher-dimensional Kaluza-like 
worlds. Fortunately, it turns out that certain grouplike vacuums exist 
also in dimensions "semisimple plus one," and thus also for n = 4. They 
are given by appropriately deformed canonical forms of trivial central 
extensions of (n - D-dimensional semisimple Lie groups. Moreover, in some 
sense such vacuums explain the normal-hyperbolic signature as a con- 
sequence of differential equations. 

From now on I shall use the relativistic convention of Latin and Greek 
indices; thus, k, K = 1 , . . . ,  n - 1, and h, A = 0, 1 , . . . ,  n - 1. Let us introduce 
an auxiliary coframe E = ( E ~  E K , . . . ) r  such that 

I I ~  K l~ M E L dE~ dE K = ~ LM ~ A 

CMKL denotes the structure constants of a semisimple Lie algebra; thus 
[ C KBCLA] is nonsingular. In adapted coordinates ( . . . ,  x ~ , . . . ) =  [ C ~ L ]  :=  a B 
i ( t , . . . , x , . . . ) ,  we have E ~  E K = E ~ ( x  j) dx i. The duals E~ span a 

nonsemisimple Lie algebra with one-dimensional center. Let us introduce 
a new coframe e =  ( e ~  e K , . . . ) ~  where 

e ~  ~ e K = I E K ,  i.e., eo=Eo,  eK=AEK 
h 

and EKA = eKh = 0. In adapted coordinates 

1 
e~  e K = - - E ~ ( x J )  dx i 

h( t )  

Such coframes will be called Lie-developing forms. They are called normal 
if the EK span a compact Lie algebra. The Killing metric y[e] is nonsingular 
if and only if h has no critical points, 

. . [  d log A'~ 2 K (~ E L 
y [ e ] = ( n - t ) k ~ ,  ] E ~ 1 7 4 1 7 6  
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Locally, 

k m y[e] = (n - 1)d log A |  log A +4Si,.Sjk dxi|  j 

If  the Lie algebra spanned by the EK is compact, then y[e] is normal- 
hyperbolic, eo is timelike, and the eK are spacelike and orthogonal to e0 in 
the y[e] sense. The proper  time T measured along integral curves of  eo by 
y[e] is an affine function of log A, T = ( 1 / c e ) l o g A + c o n s t .  Putting )t = 
6 exp(cet), we have 

y[e] = ( n -  1)a 2 dt |  k) dxi|  j, y~=4S,~Sj'~ 

y[e] is stationary and static, t and x i are, respectively, time and spatial 
coordinates, c = [cel(n - 1 )  1/2 is the velocity of light, and locally M = ~  x G; 
R represents the time axis, and G the compact ( n -  1)-dimensional space. 
Although e itself depends exponentially on time, all GL(n,R)-invariant 
quantities built of  e are time-independent, just like the Killing metric y[e]. 
There is a (2n - 1)-parameter isotropy group generated by Eo, the EK, and 
their conjugates E*K. 

It turns out that any Lie-developing coframe on M with an arbitrary 
expansion factor A is a solution of (7) for any GL(n, R)-invariant Lagrangian 
L(S). Such solutions are developing non-Abelian vacuums. Their GL(n, E)- 
invariant characteristics are static and stationary; nevertheless, some kind 
of  expansion and arrow of time is hidden in internal variables. For example, 
let us construct the Dirac-Einstein metric with ~TKt = CKL, r/Ko = 0, ~q00 = / 32, 
A = 6e"': 

h[e, ~7] = / 32 dt|  + 6 -2 exp(-2at)CKLE K | E L 

The (n - 1)-dimensional spatial part of the metric undergoes a de Sitter-like 
expansion with the factor exp ( -2a t ) .  Recall that in standard theories, 
fermion fields interact with the gravitational tetrad just through hie]. Thus, 
test matter injected into a Lie-developing vacuum will be seen as expanding 
in spite of the static character of  the Killing metric y[e]. This leads to 
obvious speculations about the red-shift and escaping of galaxies. However 
it is a mere speculation; I have yet no indication of whether the GL(n, R) 
Lagrangians may be used as alternative models of macroscopic gravitation 
(my motivation was instead microscopic). I have no convincing results 
concerning stationary spherical solutions about a point source. 

Let me finish with another speculation, concerning the signature and 
space-time dimension. They suggest that GL(4, ~) models might be part of 
the proper  theory of  space-time. Dimensions 1 and 2 are impossible: if 
n = 1, then S = 0 ;  if n =2 ,  det[y~j] = det[T~] =0,  thus everything would be 
trivial. If n = 3, there are no Lie-developing vacuums, because there are no 
semisimple two-dimensional Lie algebras. There are three-dimensional Lie 
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solutions corresponding to the simple algebras su(2), sl(2, ~). However, in 
the first case the Killing metric is elliptic; for sl(2, ~) it is normal-hyperbolic,  
but there are closed timelike lines corresponding to the compact  dimension 
in SL(2, R). I f  n --- 4, there are no Lie solutions; nevertheless, there are two 
Lie-developing vacuums corresponding to Lie algebras su(2), sl(2, R). In 
the first case the Killing tensor has signature ( + - - - )  and locally M-~  

x S 3 = R x SU(2);  R is the time axis and S 3 the 3-dimensional finite space. 
In the second case 3' has the reversed signature ( + + + - )  and M locally 
coincides with R x SL(2, R). However,  the ~ component  is now spacelike 
and there are closed timelike lines. 

Thus, if we assume the normal-hyperbolic  signature of  3' as a physical 
feature of  solutions e, then n = 4 is the lowest nontrivial dimension. Con- 
versely, assuming n = 4, we see that the normal-hyperbolic  signature is a 
property of  the most natural vacuumlike solutions. Roughly speaking, it is 
implied by differential equations. The velocity of  light, c = [ a [ ( n -  1) 1/2, is 
not a primitive constant introduced by hand; it is a parameter,  a kind of 
integration constant characterizing a given solution. For n > 4 our treatment 
could be at tempted to explain dynamically the gauge groups and spatio- 
temporal  fibrations of  Kaluza-like worlds in terms of particular solutions 
for n-legs, without losing n-dimensional general covariance. 
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